5 research outputs found

    Statističke karakteristike prvog i drugog reda signala u bežičnom telekomunikacionom sistemu sa selekcionim kombinovanjem

    Get PDF
    In doctoral dissertation, first and second order system performances of wireless communication system in the presence of fading and interference are considered. Theoretically, four cases are taken into consideration, and obtained numerical results are graphically presented and analyzed. Firstly, wireless mobile communication system with the receiver that contains automatic frequency control (AFC) loop operating over fading channel in the presence of single interference is considered. Performance measures, such as average switching rate (ASR) and mean time lose of lock (MTTL), are defined. In this doctoral dissertation, ASR and MTTL, for three different fading channels: Kg, α-μ and k-μ are obtained. In the next chapter, wireless relay communication system with two sections in the presence of multipath fading is considered. Signal envelope at the input of the receiver can be expressed as product of the first section signal envelope and the second section signal envelope. For such system model, average level crossing rate (LCR) for the case when radio relay system of the first section operates over Nakagami-m fading environment and second section operates over k-μ fading environment is obtained. Wireless relay system with two sections in the presence of non-linear α-μ fading channel is than taken into consideration. Moreover, radio relay system with two sections in the presence of multipath fading and interference is also considered. LCR of the ratio of the product of two k-μ random processes and k-μ random process is calculated. Finally, LCR of the ratio of Rician random process and product of two Rician random processes is obtained. Wireless communication system with two inputs SSC diversity receiver operating over correlated multipath η-μ fading in the presence of interference is than considered. Joint probability density function and joint distribution cumulative function of the ratios of signal to interference at inputs of SSC receivers are calculated. By using obtained expressions for probability density function (PDF), average bit error probability (ABER) for different coherent and non-coherent modulation schemes is obtained while by using derived cumulative distribution function (CDF), outage probability (OP) is obtained. At the end of doctoral dissertation, macrodiversity system with macrodiversity SSC receiver and two microdiversity SC receivers operating over Gamma shadowed multipath fading channel is proposed. In one case Nakagami-m multipath fading channel is considered while in the second case k-μ multipath fading is considered. System performances of the proposed system are derived and numerical results are graphically presented and discusse

    OUTAGE PERFORMANCE OF MULTI-BRANCH SC RECEIVER OVER CORRELATED WEIBULL CHANNEL IN THE PRESENCE OF CORRELATED RAYLEIGH CO-CHANNEL INTERFERENCE

    Get PDF
    The aim of this paper is to consider the performance of wireless communication system with signal-to interference ratio (SIR) based multiple-branches selection combining (SC) receiver. The proposed system operates over correlated Weibull multipath environment, in the presence of co-channel interference (CCI) subjected to correlated Rayleigh multipath fading. SC diversity technique is used to reduce the effects of multipath fading and CCI on the system performance. Infinite-series expression for outage probability (OP) in terms of Meijer G functions is derived. Further, numerical results are graphically presented and discussed to show the influence of fading parameters on outage probability

    Statističke karakteristike prvog i drugog reda signala u bežičnom telekomunikacionom sistemu sa selekcionim kombinovanjem

    No full text
    In doctoral dissertation, first and second order system performances of wireless communication system in the presence of fading and interference are considered. Theoretically, four cases are taken into consideration, and obtained numerical results are graphically presented and analyzed. Firstly, wireless mobile communication system with the receiver that contains automatic frequency control (AFC) loop operating over fading channel in the presence of single interference is considered. Performance measures, such as average switching rate (ASR) and mean time lose of lock (MTTL), are defined. In this doctoral dissertation, ASR and MTTL, for three different fading channels: Kg, α-μ and k-μ are obtained. In the next chapter, wireless relay communication system with two sections in the presence of multipath fading is considered. Signal envelope at the input of the receiver can be expressed as product of the first section signal envelope and the second section signal envelope. For such system model, average level crossing rate (LCR) for the case when radio relay system of the first section operates over Nakagami-m fading environment and second section operates over k-μ fading environment is obtained. Wireless relay system with two sections in the presence of non-linear α-μ fading channel is than taken into consideration. Moreover, radio relay system with two sections in the presence of multipath fading and interference is also considered. LCR of the ratio of the product of two k-μ random processes and k-μ random process is calculated. Finally, LCR of the ratio of Rician random process and product of two Rician random processes is obtained. Wireless communication system with two inputs SSC diversity receiver operating over correlated multipath η-μ fading in the presence of interference is than considered. Joint probability density function and joint distribution cumulative function of the ratios of signal to interference at inputs of SSC receivers are calculated. By using obtained expressions for probability density function (PDF), average bit error probability (ABER) for different coherent and non-coherent modulation schemes is obtained while by using derived cumulative distribution function (CDF), outage probability (OP) is obtained. At the end of doctoral dissertation, macrodiversity system with macrodiversity SSC receiver and two microdiversity SC receivers operating over Gamma shadowed multipath fading channel is proposed. In one case Nakagami-m multipath fading channel is considered while in the second case k-μ multipath fading is considered. System performances of the proposed system are derived and numerical results are graphically presented and discusse

    Analytical performance analysis of the M2M wireless link with an antenna selection system over interference limited dissimilar composite fading environments

    No full text
    This paper considers direct mobile-to-mobile (M2M) communications with a dual antenna selection (AS) system at a destination mobile node (DMN) in interference limited, dissimilar composite fading environments. In particular, we model dissimilar interference limited signals at the inputs of the dual branch AS system as (i) the ratio of two Nakagami-m (N) random variables (RVs) at the first branch and (ii) the ratio of two Rice RVs at the second branch, in order to account for non line-of-sight (NLOS) and line-of-sight (LOS) communications, respectively. Moreover, we assume variable powers of the desired as well as interference signals at the output of the DMN in order to account for the impact of shadowing. For the proposed model, we derive probability density functions, cumulative distribution functions, outage probabilities and average level crossing rates. The derived statistical results are evaluated for all the statistical measures considered and are graphically presented in order to provide insight into the impact of composite fading severities and LOS factors for the desired signal, as well as for the interference, on the system performances
    corecore